The realization space is
  [0   1   1   0   0   1   x1   -x1^3 + x1^2 + x1   -x1^3 + x1^2 + x1     x1     -x1^3 + x1^2 + x1]
  [1   1   0   1   0   0    1              x1 + 1                   1      1                x1 + 1]
  [1   1   0   0   1   1    0                x1^2                x1^2   x1^2   -x1^4 + x1^3 + x1^2]
in the multivariate polynomial ring in 1 variable over ZZ
within the vanishing set of the ideal
Ideal (x1^14 - 4*x1^12 + x1^11 + 6*x1^10 - 2*x1^9 - 4*x1^8 + x1^7 + x1^6)
avoiding the zero loci of the polynomials
RingElem[x1, x1 - 1, x1^3 - x1^2 + 1, x1^3 - 2*x1^2 + x1 + 1, x1 + 1, 2*x1 + 1, x1^2 - 2*x1 - 1, x1^4 - 2*x1^3 + 2*x1 + 1, x1^4 - x1^3 - x1^2 + x1 + 1, x1^2 - x1 - 1, x1^3 - x1 - 1]